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The instability of viscous capillary jets subject to disturbances consisting of two su- 
perposed wavenumbers, and for large disturbance amplitudes is investigated. Distur- 
bances composed of the superposition of a fundamental disturbance (first harmonic) 
with either its second or third harmonic are used. The influence of the wavenumber of 
the fundamental disturbance on the jet breakup is studied for a disturbance composed 
of a first harmonic with an initial non-dimensional amplitude of f l  = 0.01 and a 
second harmonic with an initial non-dimensional amplitude of E .  = 0.05. The influ- 
ence of the initial amplitudes of the first and second harmonics on the jet breakup is 
studied for two non-dimensional wavenumbers of the fundamental (first harmonic): 
k = 0.45 and k = 0.7; the second harmonic is unstable in the former and stable in the 
latter case. The effect of an added third harmonic is studied only for k = 0.45 but for 
a wide range of initial amplitudes. All cases are studied for an in-phase and a 180" 
out-of-phase superposition of the two waves. The nonlinear interaction between the 
two waves results in the formation of a variety of drop sizes and shapes. The breakup 
times can be controlled within a wide range using this technique. 

1. Introduction 
The use of capillary instability of a liquid jet has been one of the most common 

techniques for the production of spherical drops with uniform sizes. When a liquid jet 
is subjected to a monochromatic (single-wavenumber) disturbance with a wavenumber 
less than the cut-off wavenumber, it becomes unstable and breaks up. Each wavelength 
of the input disturbance usually generates two types of drops: a large main drop 
and one or more smaller satellite drops. Generally, the size of the satellite drops 
reduces with increasing (decreasing) the wavenumber (wavelength) and decreasing 
the Reynolds number (see Ashgriz & Mashayek 1995, and references therein). (In 
the temporal instability analysis of liquid jets, the Reynolds number is defined based 
on the capillary wave speed. Therefore, it is the inverse of Ohnesorge number, 
Re = 1 / 0 h  = ( l / ~ ) ( y r ~ / p ) ' ' ~ ,  where v is the kinematic viscosity, is the coefficient of 
the surface tension, p is the liquid density, and ro  is the jet radius.) 

In order to obtain uniform-size drops, either the larger drops or the smaller drops 
are eliminated. This is achieved mainly by three different techniques: (i) preventing 
the initial formation of the satellite drops; (ii) forcing the satellite drops to merge 
with the main drops; (iii) charging and deflecting one of the drops. The experimental 
investigations of Bousfield, Stockel & Nanivadekar (1990) show that the formation of 
the satellite drops could be prevented only for jets with Reynolds numbers less than 
0.44 (for their smallest wavenumber of k = 0.26). In addition, Ashgriz & Mashayek 
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(1995) provide a numerically determined boundary between the satellite/no-satellite 
regions in the Re, k space. They show that the no-satellite region is limited to small 
Reynolds numbers even for the wavenumbers close to the cut-off wavenumber. The 
satellite drops are persistently formed at Re larger than 4 for wavenumbers up to 
0.95. The Reynolds number for many of the commonly used liquids is much larger 
than 4. For instance, a water jet with 1 mm diameter has a Reynolds number of 200. 
Therefore, other methods must be used to eliminate the satellite drop formation. 

Satellite drops can also be eliminated by increasing the amplitude of the initial 
disturbance. This reduces the breakup time, and therefore, there is no time for the 
development of the satellite-forming liquid ligament. Ashgriz & Mashayek (1995) have 
shown that for a jet with Re = 200 the initial disturbance amplitude has to be as large 
as 80% of the jet radius in order to eliminate the satellites. Such high amplitudes, 
although possible, are impractical in most applications. In practice, however, the 
change in amplitude results in the forward or backward merging of satellite drops 
with the main drops and, therefore, the formation of uniform drops shortly after 
the breakup point. Satellite merging is due to the non-symmetric breakup of the 
liquid ligament. Pimbley & Lee (1977), Chaudhary & Maxworthy (1980a,b), Bousfield 
et al. (1990) and Vassallo & Ashgriz (1991) show experimentally that the forward or 
backward merging of the satellites with the main drops can occur at various applied 
disturbance frequencies depending on the amplitude of the disturbance. 

A more practical method of eliminating the formation of the satellite drops is by 
using a modulated disturbance. Chaudhary & Maxworthy (1980a,b) and Scheller & 
Bousfield (1991) provide results of such experiments. They use a modulated velocity 
disturbance composed of two frequencies, and show that the satellite drop forma- 
tion can be most effectively prevented by the superposition of the first and third 
harmonics for certain ratios of the initial amplitudes of the two harmonics. Modu- 
lated disturbances are also used to force the merging of the satellites with the main 
drops after their formation. Although forward and backward merging occurs even 
with monochromatic disturbances, the merging can be expedited by using modulated 
disturbances. Chaudhary & Maxworthy (1980b), and Scheller & Bousfield (1991) use 
the two-frequency disturbances and measure the distance it takes for the satellite 
drops to merge with the main drops. They show that the merging distance depends 
on the amplitude ratio of the two frequencies and the phase angle between them. 
In addition, Orme & Muntz (1990) study the droplet formation experimentally by 
perturbing the jet with an amplitude-modulated velocity disturbance. They show that 
the small droplets merge into a final configuration where the uniform drops are 
equally separated by one wavelength of the modulation frequency. Orme et al. (1993) 
further obtain sequences of repeating drop patterns by adding non-integer frequency 
ratios (the ratio of the high to the low frequency). 

The techniques described above are designed to eliminate the satellite drops. How- 
ever, in many applications the satellite drops are the ones which are desired. For 
instance, in the high-resolution ink jet printers, the main drops are eliminated and the 
smaller satellite drops are used in printing (Yamada 1978). This is achieved by first 
charging the drops and then deflecting them using a charged electrode. The deflection 
amount is different for drops with different sizes. Therefore, a drop catcher can be 
used to intercept the flight path of the drops that are to be eliminated. In order to 
effectively (e.g. instantaneously and with small signal voltage) charge the drops, the 
liquid must have good and stabilized electrical conductivity. This imposes limitations 
on the type of liquid used. Smaller satellite drops can be easily deflected even if a 
relatively low-conductance liquid is used. 
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Although it is experimentally shown that the satellite drop size can be controlled 
by using modulated disturbances, a complete theoretical analysis of this problem has 
not been reported. The only analytical study is given by Chaudhary & Redekopp 
(1980). They consider the instability of a liquid jet subject to an initial velocity 
disturbance consisting of a fundamental (first harmonic) and one higher harmonic. 
They use the method of straining of coordinates and apply a third-order nonlinear 
analysis to an infinitely long cylindrical column of inviscid fluid. The second- and 
third-order solutions show interactions between the fundamental and the harmonic, 
and feedbacks to the original inputs. Their third-order solution indicates that satellite 
drops form only for k < 0.65 and no satellite exists for k > 0.65. This is contrary 
to the experimental observations, exemplified by those of Vassallo & Ashgriz (1991), 
and the complete solution of the nonlinear equations by Ashgriz & Mashayek (1995) 
who show that for liquid columns with Re > 4, the satellite drops are persistently 
formed for the unstable wavenumbers, i.e. k < 1. 

Another theoretical study in this area is given by Scheller & Bousfield (1991), who 
use the thin filament model of Bousfield e f  al. (1986). However, their main concern is 
to identify whether the liquid ligament will break up on the downstream or upstream 
side of the potential satellite drop, based on which backward or forward merging 
of the satellite drop can be predicted - no information on satellite size control is 
provided. 

This paper follows the work of Ashgriz & Mashayek (1995) where satellite drop 
formation subject to a monochromatic perturbation is investigated. Our main concern 
in this paper is to control the breakup of a jet and the formation of the satellite 
drops by surface perturbation synthesis. We show that a variety of drop sizes and 
drop shapes can be obtained which may have important practical implications. The 
modulated disturbances have already been used to control satellite drop formation in 
ink jet printers. In addition, we discuss the ‘breakup mechanism’ of a liquid jet subject 
to large-amplitude two-wavenumber disturbances. (Recent advances in technology 
have provided means to obtain large-amplitude disturbances, e.g. see Dressler 1993.) 
We have simulated the instability of a viscous capillary jet, subject to an initial 
disturbance consisting of the superposition of the first harmonic with either the 
second or third harmonic. The problem and the numerical technique are described 
in 52. The breakup of the jet when the second harmonic is added to the initial 
disturbance and the effects of the wavenumber on the jet breakup are presented in 
$3.  In 54, we consider the superposition of the first and third harmonics and describe 
the effects of the added harmonic amplitude. Concluding remarks are provided in $5. 

2. Mathematical formulation 
Two different approaches are possible when dealing with the problem of capillary jet 

instability. One is to investigate the spatial problem of a jet emanating from a nozzle, 
when the disturbance grows with distance along the jet. The other is to consider 
an infinitely long column of liquid with a spatially harmonic initial disturbance and 
study its temporal growth. It can be shown that the two approaches are identical for 
high-velocity jets, i.e. when the average stream speed is much higher than the capillary 
wave speed. Here, we only consider the temporal instability analysis. 

We consider the temporal evolution of a liquid jet inside a vacuum or another 
immiscible fluid which exerts uniform pressure and negligible drag on the jet. The 
variables are non-dimensionalized by the radius of the undisturbed jet, r0, and a 
characteristic time scale, ( p r ; / ~ ) ’ ’ ~ .  The governing equations for the problem are 
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FIGURE 1. Surface disturbances generated by the superposition of the harmonics. 
The shaded area indicates the computational domain. 

those of continuity and the momentum in axisymmetric coordinates ( r ,  z )  which in 
non-dimensional form are written as 

v * u = o ,  (1) 

Dll 
Dt 

Re- = V. T ,  

where u = (u, v )  is the velocity vector and T = -PI+ [v~+(Vu)~] is the stress tensor for 
Newtonian fluid. D/Dt is the total derivative operator defined as D/Dt = d/dt+u.V. 
The gravity effects are neglected. Stress balance on the free surface provides the 
following boundary condition, assuming the ambient pressure as the datum: T - n = 
ReKn, on the free surface, where n is the outward unit normal and K is the curvature 
of the surface. Assuming that the surface of the jet can be described by a height 
function h(z, t ) ,  the curvature is given by K = [h,,/( 1 + h1)3/2] - [ l /h (  1 + h1)1/2], where 
subscript z refers to the derivative with respect to z .  

At the centre of the jet the symmetry conditions are applied: & / d r  = 0, and 
z1 = 0 at r = 0. Since a temporal analysis is considered here, the simulations can 
be restricted to the half of the disturbance wavelength (i.e. the non-dimensional 
wavelength of the first harmonic, A) using the symmetry. The shaded area in figure 1 
shows the computational domain. The symmetry boundary conditions for the ends 
of half a wavelength are u = 0 and dv/dz = 0 at z = 0 and A/2. 

An imposed surface disturbance as well as a zero velocity field constitute the initial 
conditions for the jet. The surface disturbance, q ,  is composed of the superposition 
of two wavenumbers : 

y(z) = el cos(kz) + E ,  cos(nkz + 6) at t = 0, ( 3 )  
where k and el respectively represent the wavenumber and the amplitude of the 
first harmonic (also referred to as the fundamental disturbance), E ,  represents the 
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amplitude of the nth harmonic, and 8 is the phase angle between the first and the 
nth harmonic input. The above boundary conditions limit the study to 8 = 0 and 
8 = 180" only. Here, we have considered the superposition of the first and second 
harmonics, and the first and third harmonics. The surface of the jet is defined by 

r = R + ~ ( z ,  t), (4) 
where R is determined so that the volume of the jet is kept constant when the initial 
disturbance amplitude is changed : 

By changing the amplitudes of these disturbances, a wide range of initial surface 
shapes can be produced. Figure 1 shows the typical shapes of the three cases that are 
considered here. 

The method of solution is the height-flux method (HFM) developed by Mashayek 
& Ashgriz (1993) which was later used to study the capillary (Ashgriz & Mashayek 
1995; Mashayek & Ashgriz 19956) and thermocapillary (Mashayek & Ashgriz 1995a) 
instability of liquid jets. This method is based on a Galerkin finite element method 
with penalty formulation, and a flux method for surface advection. Very briefly, the 
fluid domain is subdivided into small subvolumes along the jet axis. The subvolumes 
are then used to find a height function which describes the location of the jet surface. 
The jet surface in each pair of neighbouring subvolumes is approximated by a line 
segment and its slope is calculated using the volume of the fluid in the two subvolumes. 
Then, the volume flux from each subvolume to its neighbouring one is calculated. 
Thus a new height function and consequently a new surface for the jet is obtained. 
The accuracy of the method has been tested carefully and typical tables indicating 
the convergence of the method with the decrease of the mesh size and the time step 
are given in Ashgriz & Mashayek (1995) and Mashayek & Ashgriz (1995~). A similar 
approach is adopted in the current work to assure the accuracy of the results. 

The computational time step is variable during one simulation. Generally, smaller 
time steps are needed at the beginning of the simulation and near the breakup point. 
The time steps are decreased until the difference between two successive simulations 
is less than 2% for the drop sizes and the breakup time. More than 800 simulations 
have been completed. The computations are stopped and the breakup time is defined 
when the minimum radius of the jet becomes less than 1% of the undisturbed radius. 
In each simulation, the volumes obtained for the main drop and the satellite drop at 
the breakup point are used to compute the radius of the drops produced. 

3. Superposition of the first and second harmonics 
3.1. The breakup mechanism 

The theoretical investigations of capillary jet breakup indicate that for small dis- 
turbance amplitudes, the cut-off wavenumber is close to k, = 1 (Rayleigh 1879; 
Chandrasekhar 1961). Disturbances with k > k, will not grow and will only oscillate. 
This is important when superposition of two different wavenumbers is used to disturb 
the jet (wavenumber in our temporal analysis is the equivalent of the frequency (f) used 
in spatial analysis for a constant jet velocity (V,ef),  i.e. k = 27~r,f/T/l,~). For instance, 
if both wavenumbers are below the cut-off wavenumber, they both will grow; and if 
one is below and the other is above the cut-off wavenumber, one will grow while the 
other will oscillate. We have limited our study to a single Re of 200. The satellite drop 
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FIGURE 2. Jet breakup by the addition of an unstable second harmonic. k = 0.45 and Re = 200. 

sizes generated from small Reynolds number jets are relatively small, and therefore, 
those jets are not suitable for satellite size control. Drop sizes can be changed in a 
much wider range for larger Re. 

3.1.1. Unstable second harmonic 
Here, we discuss the mechanism of the breakup of a liquid jet subject to a 

disturbance composed of the superposition of the first and second harmonics. For 
small disturbance amplitudes, if the wavenumber of the first harmonic is less than 0.5 
the second harmonic is unstable. On the other hand, if the wavenumber of the first 
harmonic is greater than 0.5, the second harmonic is stable. Figure 2 presents typical 
breakup patterns for half of a wavelength (shaded area in figure 1) obtained with an 
unstable second harmonic. The wavenumber considered is 0.45 and the amplitudes of 
the first and second harmonics are both 0.01. For these simulations, 70 elements were 
used in the axial direction and 4 elements in the radial direction. In the following 
description, the point at z = 0 and the point at z = ,?/2 are referred to as the swell 
and the neck points, respectively (they are respectively the crest and the trough of the 
first-harmonic surface disturbance). In the case of a single-wavenumber disturbance 
(figure 2a), the jet remains sinusoidal during the larger portion of the breakup time 
until a cylindrical thread is formed. A contraction then appears at the joint between 
the bulbous swell region and the ligament thus creating a local pressure maximum 
which accelerates the detachment of the ligament by pushing the liquid away from 
that point. With the second harmonic input (figure 2b), a contraction is formed around 
A/4. The breakup occurs at one end of the ligament, resulting in a large satellite. When 
a phase angle of 180" is used, an almost opposite evolution of the jet occurs as shown 
in figure 2(c). Here, a bulging of the central region is observed and two contractions 
are formed at the swell and the neck points. The contraction at the neck point leads to 
the formation of a small ligament, which after pinch-off will produce the satellite drop. 
Notice that the breakup time is reduced when using an unstable second harmonic. 

In order to explain the shape evolutions observed in figure 2, the linear modes of the 
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surface shape and their temporal evolution during the breakup process are determined. 
A discrete Fourier decomposition is used to analyse the jet radial displacement: 

3 

r(z, t )  = R + 1 en cos(nkz). 
n=O 

The orthogonality of the cosine functions is used to compute the coefficients err. 
Figure 3 shows the temporal evolution of the first, second, third and fourth harmonics 
associated with figure 2. As expected, the first harmonic is unstable and grows with 
time. For a monochromatic perturbation (figure 3a), the higher harmonics grow 
rapidly only near the breakup point. The satellite formation is the direct consequence 
of the growth of these harmonics. With a second-harmonic input, the breakup process 
is seen to be dominated by the second harmonic which grows much faster than the 
first (see figure 3b). The high positive amplitude of the second harmonic explains the 
formation of the neck at A/4 observed in figure 2(b). When using a phase angle of 
180", the initial amplitude of the second harmonic is negative and its growth results 
in a high negative amplitude as shown in figure 3(c) ,  which is favourable for the 
reduction of the satellite size. 

The results of figure 3 can also be explained based on the analytical solution of 
Chaudhary & Redekopp (1980) who studied the capillary instability of the jet subject 
to an initial velocity disturbance of the form q(z, t = 0) = 0 and dq/dt(z, t = 0) = 
elcoo cos(kz) + F,,CL)~ cos(nkz + O ) ,  where oO is a characteristic scaling frequency given 
by the linear dispersion relations (Rayleigh 1879). They found the following first- and 
second-order solutions (their third-order solution is not given here) : 

y11 = B11 cos(kz) + B12 cos(nkz + 0) ,  (7) 

y2 = Bll cos(2kz)+B22 cos[2(nkz+H)]+B23 cos[(n- 1 ) k z + O ] + B ~ ~ ~ o ~ [ ( n + l ) k z + O ] + B ~ ~ .  
(8) 

The coefficients B,, are defined in Chaudhary & Redekopp (1980). The first term, 
cos(2kz), of the second-order solution represents the generation of the second har- 
monic due to the first: this explains the growth of the second harmonic when using 
a single sinusoidal disturbance as shown in figure 3(a).  For a second-harmonic in- 
put ( n  = 2), the third and fourth harmonics are also generated immediately by 
the second-order solution (cos[(n + 1)kz + 01 and cos[2(nkz + O)]). The third term 
(cos[(n- l)kz+0]) represents a feedback from the second harmonic to the first. Hence, 
a second-harmonic input generates interactions between the first four harmonics only 
by considering the second-order solution. The results of figures 3(b) and 3(c) can be 
explained by noting that the first term cos(2kz) of the second-order solution does not 
contain the input phase angle 0. The amplitude of the second harmonic for n = 2 
based on the first- and second-order solutions is B12 cos(2kz + O )  +B21 cos(2kz). There- 
fore, for 8 = 0 the two terms add together resulting in a relatively large increase in 
the amplitude of the second harmonic as shown in figure 3(b). However, for 8 = 180" 
they are subtracted from each other resulting in a relatively small increase in the 
amplitude of the second harmonic as shown in figure 3(c). 

3.1.2. Stable second harmonic 
Next, the breakup of a jet subject to a disturbance consisting of a fundamental and 

a stable second harmonic is discussed. The computations are performed with k = 0.7 
with 50 elements in the axial direction and 4 elements in the radial direction. The 
amplitudes of the first and second harmonics are 0.01 and 0.10, respectively. Here, a 
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FIGURE 3. Temporal variations of the amplitudes of the harmonics for an added unstable second 
harmonic. k = 0.45 and Re = 200. 

large initial disturbance amplitude for the second harmonic is presented, since smaller 
amplitudes do not show a significant change in the breakup of the jet. A more detailed 
study of the amplitude effect is presented in $3.3. 

The addition of a stable second-harmonic component to the initial disturbance 
results in the oscillation of the jet surface followed by a contraction of the neck 
point and the growth of the swell point, leading to the formation of a ligament. Two 
very different breakup configurations are obtained depending on the phase angle, 
which are explained by considering the temporal evolution of the harmonics shown 
in figure 4. The first harmonic is the main cause of the jet instability. The second 
harmonic is stable, as shown by the slightly damping oscillations in figures 4(b)  and 
4(c). Because the second harmonic is oscillating, its sign near the breakup point can be 
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FIGURE 4. Temporal variations of the amplitudes of the harmonics for an added stable second 
harmonic. k = 0.7 and Re = 200. 

either positive or negative. This has a major influence on the outcome of the breakup 
(this effect is further discussed in $3.2). Initially, the crest of the second harmonic 
is at A/2 and its trough is at A/4 as shown in figure 1. Thus, it is preventing the 
jet from breaking at 4'2 and, therefore, contributes to the formation of the satellite. 
Conversely, a negative amplitude of the second harmonic acts in the same direction 
as the first harmonic and helps the jet to break at i /2 .  

3.2. Effect of the wavenumber 
In this section, the breakup of the jet for non-dimensional wavenumbers of the 
first harmonic ranging from 0.2 to 0.9 are investigated. The initial amplitudes of 
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FIGURE 5. Variations of the main and the satellite drop sizes with the wavenumber for Re = 200. 

the sinusoidal disturbances are kept constant at €1 = 0.01 and €2 = 0.05. The 
initial domain is discretized into 40 to 90 subvolumes depending on the wavenumber 
considered. 

Figure 5 shows the variation of the main and satellite drop sizes versus the 
wavenumber of the first harmonic. Three sets of results are presented in this figure: 
(i) first harmonic, only; (ii) added second harmonic with 8 = 0; and (iii) added 
second harmonic with 8 = 180". Two different behaviours are observed. For k < 0.5, 
when the added second harmonic is unstable, the breakup is highly dependent on the 
initial phase of the second-harmonic input. For no phase difference, the initial positive 
amplitude of the unstable second harmonic leads to satellites much larger than when 
no second harmonic is added. For very small wavenumbers, the satellite drop becomes 
larger than the main drops. For 8 = 18@, which is equivalent to an initial negative 
amplitude of the second harmonic, the satellite drop sizes are significantly reduced. 

Two factors are competing here. One is the change in the growth rate with 
changing wavenumber and the other is the increase in the satellite drop size with 
the increase in the wavelength (i.e. reducing the wavenumber). For k > 0.5, the 
drop sizes oscillate when a second harmonic, either with or without phase angle, is 
added. Therefore, in comparison with the monochromatic disturbance, the addition 
of a second harmonic can result in an increase or a decrease of the satellite size, 
depending on the wavenumber of the first harmonic disturbance and the value of the 
initial phase angle. The oscillations have several remarkable characteristics. (i) They 
are located around the curve obtained with no second harmonic input, and the part 
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FIGURE 6. Temporal variations of the amplitudes of the first and the second harmonics for 
k = 0.60, 0.635, and 0.67. 

of the oscillatory curve located below the dotted line has slightly larger amplitudes 
than the part above it. (ii) The wavelength of these oscillations is not constant: it 
first increases then decreases with increasing disturbance wavenumber of the first 
harmonic (more oscillations are observed for large wavenumbers). (iii) The amplitude 
of the oscillations is decreasing with increasing wavenumber. (iv) The initial phase 
of 180" results in a curve which has a wavenumber-dependent phase difference with 
that obtained with no phase input (the local extrema of the two curves are at slightly 
different wavenumbers) and their intersection points are located on the curve of the 
monochromatic disturbance. 

This oscillatory behaviour can be explained by considering the evolution of the har- 
monics. Figure 6 shows the temporal evolution of the first and the second harmonics 
for three particular values of the wavenumber: k = 0.635, which is approximately an 
intersection point between the three curves (see figure 5 ) ,  k = 0.60, and 0.67, where 
large differences in the satellite size are obtained when using a phase angle for the 
second harmonic. Figure 6 reveals that the initial phase input of the second harmonic 
remains constant for a large portion of the breakup time. The evolution of the first 
harmonic is similar for all three wavenumbers until the second harmonic becomes 
unstable. For k = 0.60 (figure 6 0 4 ,  the second harmonic becomes unstable just after 
having reached a maximum (minimum) for 8 = 0" ( H  = 180"). After the second 
harmonic becomes unstable, the first harmonic for 0 = 180" grows much faster than 
the one for 8 = o", resulting in a significant amplitude difference at the breakup point. 
On the other hand, there is only a slight difference in the amplitudes of the second 
harmonic at the breakup point. Therefore, the large difference observed in the satellite 
sizes is related to the sign of the second harmonic at the time it becomes unstable. 
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A similar discussion can be given for k = 0.67 (figure 6c,J). Here, the second 
harmonic has three oscillations as opposed to the two oscillations of k = 0.60 and the 
sign of the second harmonic at the time it becomes unstable is the opposite of the 
previous case. As a result, at the breakup point, the amplitude of the first harmonic 
for 6' = 0" is higher than that for 6' = 180" while the amplitudes of the second 
harmonic are almost the same. Hence, there is a significant decrease (increase) of the 
satellite size for 6' = 0" (6 = 180"). Using a phase angle of 6' = 180", i.e. imposing a 
negative amplitude of the second harmonic, essentially results in changing the sign 
of the second harmonic at the time it becomes unstable, since the period of the 
oscillations remains the same. For k = 0.635 (figure 6b,e), the amplitudes of the 
second harmonic for 6' = 0" and 8 = 180" are almost equal and close to zero when 
the second harmonic becomes unstable. The later evolution of the first and second 
harmonics is similar for all three cases considered which, consequently, results in 
identical breakup configurations. 

From these observations, the time when the second harmonic becomes unstable, 
t,, appears to be a major factor in determining the outcome of the jet breakup. The 
satellite is smaller (larger) than that produced by a single-wavenumber disturbance 
when the amplitude of the second harmonic is negative (positive) at t = t,. It can 
be concluded that the drop size oscillations are caused when the second harmonic 
becomes unstable, t,, and by the variation of the oscillation period of the second 
harmonic with increasing wavenumber. Assuming a linear temporal oscillation of the 
second harmonic, the amplitude of the second harmonic at t ,  is given by 

( € 2 1 ,  = €20 COS(W2tS) (9) 
where €20 is the initial amplitude of the second harmonic (e.g. €20 = k0.05 for 0 = 0" 
and 180") and 0 2  is defined by Rayleigh (1879): 

for n = 2. 
Based on the discussion given for figure 6, it can be assumed that the satellite size is 

minimum when the second harmonic is minimum at t, and vice versa, i.e. (4, NN k0.05 
at the wavenumbers associated with the local extrema of the satellite sizes. Therefore, 
t, can be determined at these particular wavenumbers. For instance, for 6' = 0, 
t ,  = 2rcm/o2 at the wavenumbers corresponding to local maxima of satellite size 
(i.e. k = 0.59, 0.73, 0.835, and 0.895), and t ,  = ( 2 m  - l)n/crtz at the wavenumbers 
corresponding to local minima of satellite size (i.e. k = 0.535, 0.68, 0.80, and 0.875), 
where m is chosen so that t, has the highest value below the breakup time. Assuming 
that the breakup is only due to the growth of the first harmonic the breakup time, &, 
is predicted by Rayleigh's theory: 

= -ln 1 (&) 
m1 

where €10 is the initial amplitude of the first harmonic (here €10 = 0.01) and 01 is 
the growth rate of the first harmonic, given by equation (10 )  with n = 1. The results 
of the numerical simulations revealed that & was always located between t ,  and the 
actual breakup time and that the difference between &, and t, is oscillatory. Assuming 
& to be a good approximation of the time of instability of the second harmonic, 
equation ( 1  1) provides a continuous variation of t, with increasing wavenumber. The 
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FIGURE 7. Comparison of the oscillations in the satellite drop size (a)  obtained from the simulations 
with ( b )  the oscillations predicted for the amplitude of the second harmonic using the linear theory. 

amplitude of the second harmonic at t ,  can then be determined using equation (9).  
Figure 7 ( b )  shows the variations of (e2)s with increasing wavenumber which are to 
be compared with the oscillations of the satellite drop size given in figure 7(a).  The 
two oscillations are qualitatively similar, however the extrema do not occur at the 
same wavenumbers. The differences between the oscillations become larger at larger 
wavenumbers since the error caused by assuming & to be the time when the second 
harmonic becomes unstable is larger relative to the oscillation period of the second 
harmonic which decreases with increasing the wavenumber. 

The variation of the breakup time with the wavenumber, k,  is shown in figure 8 
for €2 = 0.05 and 6 = 0. Similar evolution of the breakup time is obtained for the 
two values of phase angle considered. Therefore, we have only plotted the results 
obtained with the second-harmonic input with no phase angle, along with the case 
of a monochromatic disturbance. With the monochromatic disturbance, the breakup 
time reaches a minimum corresponding to the most unstable wavenumber, which 
is also analytically predicted by Chandrasekhar (1961). When a second harmonic 
is added, two distinct evolutions are obtained as seen previously for the drop size 
variation with wavenumber. When the second harmonic is unstable (k < O S ) ,  the 
breakup time is much smaller than in the case of a monochromatic disturbance and a 
minimum is achieved close to k = 0.35. This is close to the wavenumber of maximum 
growth rate for the second harmonic according to Rayleigh, i.e. 2k = 0.7, which 
shows that the breakup in this region is mainly dominated by this harmonic. A sharp 
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increase of the breakup time occurs at the transition to a stable second harmonic. 
For k > 0.5, the second harmonic is stable and the breakup time is very close to that 
obtained with no second-harmonic input. Small oscillations of the breakup time seem 
to be occurring around the curve of no second-harmonic input. 

3.3. EfSect of the initial amplitude 
3.3.1. Stable second harmonic 

We first investigate the amplitude effect of a stable second harmonic at k = 0.7. For 
a given input of the first harmonic, the amplitude of the second harmonic is gradually 
increased until very large initial deformations of the jet surface are obtained. The 
effects of a phase input is studied by performing the simulations with 6' = 0" and 
6' = 180". Figure 9 shows the breakup patterns obtained with a first-harmonic input 
of c1 = 0.01. When no phase input is used (figure 9a), the increase of the second 
harmonic gradually reduces the satellite size by moving the breakup location towards 
the neck. However, a maximum reduction of the satellite is achieved around c2 = 0.15. 
The satellite size remains small until € 2  = 0.30 and keeps on increasing thereafter. 
Meanwhile, the satellite shape is changing from a thin ligament to a bulbous drop 
for very high inputs of the second harmonic. Figure 9(b) shows the breakup patterns 
obtained for 6' = 180". Results are very different in this case. First, there is an increase 
of the satellite size until c2 = 0.30. A cylindrical shape, similar to that obtained with 
no second-harmonic input is produced at c2 = 0.34. Then, a slight increase in €2 
results in a sudden relocation of the breakup point, and a significant reduction in 
the satellite drop size as observed in figure 9(b) at e2 = 0.345. Thereafter, the satellite 
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drop size remains relatively small with increasing F? until a second sharp variation is 
observed at 6: = 0.50. 

As observed previously, it is very helpful to consider the harmonic components of 
the surface deformation. Figure 10 shows the temporal evolution of the first, second, 
third and fourth harmonics associated with three amplitudes of figure 9(a). It can be 
seen that the number of oscillations of the second harmonic is constantly decreasing 
with increasing initial disturbance amplitude. For low inputs of the second harmonic, 
four extrema can be observed before the breakup, but only two extrema are obtained 
for very large inputs (i.e. c2 = 0.50). As discussed earlier, the sign of the second 
harmonic at the time it becomes unstable is the key factor in the outcome of the 
jet breakup. Results indicate that no significant change occurs for low inputs of the 
added harmonic (up to €2 = 0.05). The second harmonic, after several oscillations, 
grows near the breakup and reaches a high positive amplitude. For e2 = 0.10, the 
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FIGURE 10. Temporal variations of the amplitudes of the harmonics for different values of the 
initial amplitude of the second harmonic. k = 0.70, Re = 200, el = 0.01, and Q = 0". 

second harmonic does not grow significantly near the breakup point. This results 
in a reduction of the satellite size. As the initial input is increased, the oscillations 
are shortened such that the second harmonic becomes unstable when its amplitude 
is negative. This change in the sign of the second harmonic is associated with the 
gradual reduction of the satellite drop. When the initial disturbance amplitude is 
increased beyond € 2  = 0.30, a reverse phenomenon happens. The amplitude of the 
second harmonic close to the breakup time is increased, leading to a gradual increase 
of the satellite size. From € 2  = 0.43 to e2 = 0.50, the second harmonic becomes 
unstable at the time its amplitude is positive and, consequently, very large satellites 
are obtained as shown in figure 9(a) at € 2  = 0.43, and 0.50. Similar behaviour is 
observed for 8 = 180" (see Huynh 1994). 

Higher initial amplitudes of the first harmonic are also investigated: €1 =0.05, 
0.1 and 0.2. The drop sizes obtained with increasing the amplitude of the second- 
harmonic component are presented in figure 11 for 8 = 180". In figure ll(a,c,d) the 
addition of the second harmonic causes the formation of gradually larger satellite 
drops. Discontinuities are observed in all four curves, at relatively high amplitudes 
of the second-harmonic input. Here, the discontinuity is referred to the change in 
the breakup location from one side to the other of the liquid zone. The satellite size 
is greatly reduced thereafter and remains small with further increase of the second 
harmonic, except for €1 = 0.01 where another sharp increase of the satellite size is 
observed at € 2  = 0.50. The main drop size does not vary significantly except for very 
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FIGURE 11. Variations of the main and satellite drop sizes with the initial amplitude of the second 
harmonic for various inputs of the first harmonic. k = 0.70, Re = 200, and Q = 180". 

high-amplitude disturbances of the second harmonic. At €1 = 0.05 (figure 116) the 
change in the satellite size is opposite to the other three cases shown in figure ll(a,c,d). 
In this case the addition of the second harmonic initially reduces the satellite size. 
The particular behaviour of the jet breakup shown in figure l l (b) ,  is attributed to 
the initial distribution of the surface energy. (The plots of drop sizes for 0 = 0" are 
provided in Huynh 1994.) 

Figure 12 shows the variations of the breakup time with increasing the initial 
amplitude of the second harmonic. Large variations in the breakup time are observed 
around the points where sharp discontinuities in the satellite size are observed. This 
is due to the fact that the breakup time is closely related to the evolution of the 
jet radius near the breakup location. Therefore, large variations of the breakup time 
can result from significant relocation of the breakup point. The breakup time does 
not vary monotonically with increasing amplitude of the second-harmonic input. As 
an example, the curve obtained with €1 = 0.01 and 8 = 0" in figure l2(a) shows a 
gradual decrease of the breakup time until e2 = 0.25, which corresponds to a gradual 
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moving of the breakup location towards the neck point. However, the breakup time 
then starts to increase again until e2 = 0.43, which is associated with an increase of 
the satellite length in figure 9(a). The effect of the second harmonic amplitude with 
8 = 180" on the breakup time is small for small to moderate amplitudes. A significant 
decrease of the breakup time occurs for € 2  > 0.25. 

3.3.2. Unstable second harmonic 
We now study the effects of the amplitude of the second harmonic. The wavenumber 

of the first harmonic considered is k = 0.45. As discussed earlier, a positive initial 
amplitude of the second harmonic usually results in a large satellite size. To reduce 
the satellite size, we utilized a phase angle of 180" in order to have a negative 
initial amplitude of the second harmonic. Figure 13 shows the results of simulations 
performed with increasing initial amplitude of the second harmonic for a constant 
amplitude of the first harmonic at €1 = 0.01. For a single-wavenumber disturbance 
the satellite formation is mainly due to the growth of the second harmonic near the 
breakup point. As expected, the satellite size is significantly reduced with the first 
input of the second harmonic, is .  c2 = 0.005. However, a small satellite remains even 
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for very large initial amplitude of the second harmonic. In addition, a contraction 
is formed at z = 0 starting at e2 = 0.02 and it becomes more pronounced with 
increasing input of the second harmonic, resulting in the formation of a thin ligament 
at e2 = 0.15. This configuration is very unfavourable, since it is likely to lead to 
further pinch-offs within the main drop. The reason for this is that shifting the second 
harmonic by 180" results in the formation of two necks: one at A/2 ,  which helps to 
reduce the satellite size, and one at z = 0, which is responsible for the formation of 
the thin thread. 

An inspection of the amplitude of the harmonics reveals that since the breakup 
time is rapidly reduced with increasing inputs of the second harmonic, the first 
harmonic has less time to evolve and its contribution to the breakup diminishes (see 
Huynh 1994). Indeed, starting with €2 = 0.15, the first-harmonic amplitude remains 
small in comparison with the second-harmonic amplitude. This explains the formation 
of the slender thread near z = 0. The persistence of a small satellite, even though 
both the first and the second harmonics are contributing to break the jet at z = A/2 
is due to the generation of higher harmonics through nonlinear interactions. 
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The variations of the drop sizes with initial e2 and for different initial amplitude 
of the first harmonic indicate an immediate reduction of the satellite size for low 
inputs of the second harmonic. This reduction is faster and more important when 
the first-harmonic amplitude is small as shown. However, the satellite size does not 
decrease significantly thereafter and remains almost constant. The ligament length 
also decreases in the same way with increasing the amplitude of the second harmonic, 
indicating that the reduction of the satellite size is mainly due to a displacement of the 
breakup location towards z = A/2. In addition, the breakup time rapidly reduces with 
the first input of the unstable second harmonic. It then continuously decreases with 
increasing initial amplitude of the second harmonic. The breakup time also decreases 
with increasing the amplitude of the first harmonic. These results are expected since 
the increase of either the first or the second harmonics results in an augmentation of 
the jet instability (see Huynh 1994 for details). 

4. Superposition of the first and third harmonics 
Figure 14 depicts several breakup configurations for the superposition of the first 

and third harmonics for k = 0.45. With no phase input (figure 14a), no significant 
change is observed for low values of the third-harmonic input. The first remarkable 
change occurs for €2 = 0.23. The jet profile shows the formation of a thin ligament 
connecting two bulbous regions around the swell and the neck points. The slender 
ligament may break at either of its ends with a small increase of the initial disturbance. 
A similar pattern occurs at €3 = 0.25 with a thinner ligament. Similarly to the second- 
harmonic, sharp changes in breakup configurations are observed for large initial 
disturbance amplitudes. The large satellite drop produced for c3 = 0.37 is almost 
eliminated when increasing the third-harmonic input to 0.38. An even larger variation 
of satellite size is obtained for higher initial surface deformation. 

When a phase angle is added to the third harmonic (i.e. 6' = 180"), a slight motion 
of the breakup point towards the neck along with small modifications of the satellite 
shape can be observed for low inputs of the third harmonic (figure 14b). Significant 
reduction of the satellite size is achieved when increasing the harmonic input from 0.17 
to 0.175, where an almost uniform breakup is obtained. This favourable configuration 
persists until €3 = 0.37, after which a second sharp change occurs and results in the 
formation of a very large satellite at €3 = 0.38. 

An inspection of the temporal evolution of the Fourier coefficients associated with 
figure 14(a) (shown in figure 15) reveals that a necessary condition for the reduction 
of the satellite size is a positive initial amplitude of the third harmonic. However, this 
is not sufficient, since the third harmonic is also helping to break the jet around A/6 .  
The amplitude of the second harmonic appears to have a significant influence on the 
size of the satellite drop. Figure 15 shows that the amplitude of the second harmonic 
at the breakup time is positive up to €3 = 0.37. At €3 = 0.38 the amplitude of the 
second harmonic at the breakup time has become negative, resulting in the formation 
of a very small satellite drop. The variations of the breakup location observed at 
€3 = 0.23 to 0.37 in figure 14(a) are attributable to the changes in the amplitude of 
the third harmonic at the breakup point, resulting from the decrease of the breakup 
time. When a phase angle of 180" is used, the second-harmonic growth is more 
quickly reduced. A low amplitude of the harmonic is obtained from €3 = 0.175 to 
0.37, associated with the small satellites of figure 14(b). But, the second harmonic 
amplitude at the breakup is large again for higher inputs of the third harmonic and 
significant satellites are formed as shown at €3 = 0.38 of figure 14(b). 
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harmonic is B23. For n = 3,  this term becomes 

where the coefficients bijk are defined in Chaudhary & Redekopp and on is defined 
by equation (10). 

Since our simulations are performed with k = 0.45, 01 and 0 2  are real positive 
while w3 is imaginary. Therefore, in B23, the two last terms are products of hyperbolic 
functions (sinh(wlz), cosh(ol, 7)) with sinusoidal functions (sinh(osz), cosh(03, z)), thus 
resulting in oscillations with increasing amplitudes. Similar temporal evolution of the 
second harmonic was obtained in our computations as shown in figure 15. This 
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comparison can only be qualitative as the nature of the initial disturbances in the 
two cases is different. 

Three initial amplitudes of the first harmonic have been investigated: el =O.Ol, 0.05 
and 0.10. The main and satellite drop sizes obtained with increasing third-harmonic 
input are shown in figures 16 and 17. In figures 16(a) and 16(c), no significant 
reduction of the satellite size is observed for small to moderate initial amplitudes 
of the third harmonics. However, a sharp discontinuity in size occurs at a larger 
amplitude. At first, the increase of the third-harmonic input results in a gradual 
increase of the satellite size. A small reduction is then observed in both curves at 
~3 =0.235 and 0.25 for f 1  =0.01 and 0.10, respectively. After the discontinuity, the 
satellite drop sizes become very small. When the amplitude of the first harmonic 
is increased to el = 0.05, the breakup behaviour significantly changes (figure 166). 
Here small increases in the amplitude of the added third harmonic decrease the 
satellite size, followed by a sharp discontinuity at 6; = 0.05 which further decreases 
the satellite drop size. At large amplitudes of the third harmonic two discontinuities 
are observed. The first one increases the satellite size and the second one decreases 
it. For very large initial amplitudes of the first and third harmonics the breakup time 
is greatly reduced, therefore the surface has no time to evolve further. For instance, 
for cl  = 0.10 (figure 16c), the satellite drop size does not increase significantly by 
changing e3. For 0 = 180" (figure 17a,c), however, the addition of the third harmonic 
initially decreases the satellite drop size slightly. This slight decrease is followed by a 
sharp discontinuity at higher values of e3. Its occurrence varies for each amplitude 
of the first harmonic. A second discontinuity is obtained at high amplitudes of the 
third harmonic, resulting in the formation of a very large satellite. Note that the 
sets of results for 0 = 180" differ from those for 0 = 0 for very high disturbance 
amplitude: the satellite remains very large in figures 17(a) and 17(c), while it is almost 
eliminated in figure 16(h) for ei > 0.45. Similar to figure 16, here too the breakup 
behaviour is different for el  = 0.05 (figure 17h). The breakup behaviour resembles 
that of figure 16(a) and 16(c,): the satellite size first increases slightly, shows a small 
dip at € 3  = 0.10. and then shows two discontinuities. The difference here is that the 
satellite size remains large at high f3 .  

5 .  Concluding remarks 
This paper presents a numerical investigation of capillary jet breakup when the 

jet is subject to an initial surface disturbance composed of the superposition of a 
fundamental disturbance (first harmonic) with either its second or third harmonics. 
Effects of the large-amplitude two-wavenumber disturbances on the drop sizes and 
the breakup times are investigated. It is observed that such disturbances may result 
in a variety of breakup configurations, drop sizes and drop shapes. The numerical 
simulations are completed for a jet with Re = 200. 

Drop sizes after the breakup depend on whether the added harmonic is stable 
or unstable. When the added second harmonic is unstable (the wavenumber of the 
fundamental disturbance is k < 0.5), the satellite droplets can be significantly larger 
or smaller than those formed by a monochromatic disturbance depending on the 
phase angle between the added harmonic and the fundamental disturbance. With 
monochromatic disturbances, the satellite formation is mainly related to the growth 
of the second harmonic near the breakup point. Therefore, adding a second-harmonic 
disturbance with a negative initial amplitude reduces the satellite drop size and, 
conversely, a positive initial amplitude increases its size. In  the present study a 
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FIGURE 16. Variations of the main and satellite drop sizes with the initial amplitude of the third 
harmonic for various inputs of the first harmonic. k = 0.45, Re = 200, and 8 = 0". 

negative initial amplitude of the second harmonic is obtained by adding a phase 
angle of 180" to it. 

When the added harmonic, either second or third, is stable, its influence on the 
droplet size is small for small to moderate amplitudes. An inspection of the temporal 
evolution of the Fourier coefficients reveals that a favourable condition for the 
reduction of the satellite size is the addition of a second harmonic with a negative 
initial amplitude or a third harmonic with a positive initial amplitude. By increasing 
the amplitude of the added harmonic, the satellite droplet size decreases sharply 
at a critical amplitude. This critical amplitude depends on the amplitude of the 
fundamental disturbance and its phase angle with respect to the added harmonic. 
For a stable added second harmonic and for a constant initial amplitude ratio of 
the fundamental and its harmonic (ez/el), drop sizes oscillate with increasing the 
wavenumber of the fundamental disturbance. When the second harmonic is unstable 
( k  < 0.5), the breakup time is much smaller than that in the case of a monochromatic 
disturbance and a minimum is achieved close to k = 0.35. A sharp increase of the 
breakup time occurs at the transition to a stable second harmonic. For k > 0.5, 
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harmonic for various inputs of the first harmonic k = 0 45, Re = 200, and 8 = 180" 

the second harmonic is stable and the breakup time is very close to that obtained 
with no second harmonic input. The breakup time oscillates around that of the 
monochromatic disturbance on increasing the wavenumber. The amplitude of these 
oscillations is very small. 

The present study clearly shows that a variety of sizes can be generated due to the 
nonlinear interaction between the two disturbance wavenumbers. This can be useful 
in ink jet printers where the printing resolution depends on the diameter of the ink 
drops and, therefore, on the orifice diameter. Using modulated disturbances one can 
change the printing resolution without changing the orifice diameter. 

Finally, a note on the size of the drops formed by the natural breakup of a liquid 
jet may be timely. Rayleigh (1879) suggested that the fastest growing wavelength is 
responsible for the natural breakup of a liquid jet, and therefore, the mean size of 
the drops formed in this process can be determined by this wavelength. However, 
the superposition of the other disturbances on the fastest growing disturbance and 
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their relative amplitudes can significantly change the breakup times and the sizes of 
the drops formed after the breakup. Therefore, a statistical investigation of the sizes 
formed by the superposition of random disturbances may provide a better estimation 
of the mean drop size resulting from the natural instability of liquid jets. 
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